CTEQ LHC cross section project

Participants/programs

- All interested CTEQ people + some interested outsiders
 - John Campbell (MCFM)
 - Jeppe Andersen (BFKL-type calculations)
- LO/NLO/PS/resum
 - Madgraph (could be Alpgen as well but Steve is more familiar with Madgraph)
 - Pythia/Herwig (often in combination with Madgraph)
 - MCFM (can give both LO and NLO predictions)
 - MC@NLO (to test impact of NLO with parton showers, for a limited number of processes)
 - ResBos/wttot
 - ...your program

LHC environment: UE and min bias

- UE tunes and uncertainties (for several of the parton shower Monte Carlos)
 - charged particle multiplicities, transverse momenta
 - jet production from min bias events
 - intrinsic k_T needed for Monte Carlos for various processes
 - impact on min bias events and on UE for hard scattering events

LHC environment: LO/NLO/NNLO/NNLL

- In the form of *mini-essays*
- What LHC cross sections do we know at NLO/NNLO?
- What cross sections need to be calculated/can be estimated?
- Where do logs come from?
- When do they need to be re-summed? What logs? When soft and when soft+collinear?
- What is the connection between the re-summed logs and the higher order? Is re-summing always a good thing? Can scale dependence at NNLO be smaller than scale dependence at (threshold) resummed NLO?
- What is the connection between parton showering and resummation? Parton showering and NLO?
- When may the BFKL-type logs become important?
- When do EW corrections become important?

LHC environment: pdf's

- Impact of heavy quark mass effects on CTEQ6.6 pdf's
- Uncertainties on and correlations among pdf's
- Pdf luminosities and uncertainties
- Pdf uncertainties for each specific process

K-factors

- Useful to collect K-factors for available processes (such as from table from review paper with Campbell and Stirling)
 - will update in near future
- Generalizations
 - processes with large color annihilation tend to have large K-factors (gg->H, gg->γγ)
 - the more final state particles in a process, the smaller the NLO corrections
 Hard interactions of quarks and gluons: a primer for LHC physics

Table 1. K-factors for various processes at the Tevatron and the LHC calculated using a selection of input parameters. In all cases, the CTEQ6M pdf set is used at NLO. $\mathcal K$ uses the CTEQ6L1 set at leading order, whilst $\mathcal K'$ uses the same set, CTEQ6M, as at NLO. Jets satisfy the requirements $p_T > 15 \, \text{GeV}$ and $|\eta| < 2.5 \, (5.0)$ at the Tevatron (LHC). In the W+2 jet process the jets are separated by $\Delta R > 0.52$, whilst the weak boson fusion (WBF) calculations are performed for a Higgs boson of mass 120 GeV. Both renormalization and factorization scales are equal to the scale indicated.

	Typical scales		Tevatron K-factor			LHC K-factor		
Process	μ_0	μ_1	$\mathcal{K}(\mu_0)$	$\mathcal{K}(\mu_1)$	$\mathcal{K}'(\mu_0)$	$\mathcal{K}(\mu_0)$	$\mathcal{K}(\mu_1)$	$\mathcal{K}'(\mu_0)$
W	m_W	$2m_W$	1.33	1.31	1.21	1.15	1.05	1.15
W + 1 jet	m_W	$\langle p_T^{ m jet} angle$	1.42	1.20	1.43	1.21	1.32	1.42
W + 2 jets	m_W	$\langle p_T^{ m jet} angle$	1.16	0.91	1.29	0.89	0.88	1.10
$t\bar{t}$	m_t	$2m_t$	1.08	1.31	1.24	1.40	1.59	1.48
$b\bar{b}$	m_b	$2m_b$	1.20	1.21	2.10	0.98	0.84	2.51
Higgs via WBF	m_H	$\langle p_T^{\rm jet} \rangle$	1.07	0.97	1.07	1.23	1.34	1.09

113

Standard Candles

- W/Z
 - inclusive
 - y distribution
 - ▲ -5 to +5 in 0.2 bins
 - ◆ p_T distribution
 - ▲ 0-100 GeV/c in 1 GeV/c bins
 - ▲ 0-1 TeV/c in 10 GeV/c bins

- LO
- NLO
 - differences between common programs (MCFM,wttot,ResBos,...)
- NNLO
- Re-summed (ResBos)
- Threshold?
 - connection between NLO+threshold and NNLO
- BFKL effects
- EW effects
- Parton shower (Pythia/Herwig, Madgraph+Pythia, MC@NLO)
- Pdf correlations between W+/W-/Z (at LHC and at Tevatron)

Standard Candles

- Double and triple gauge boson production
 - WW,ZZ,WZ
 - ◆ ZZZ,WWZ

- LO
- NLO
 - Frank for ZZZ
 - Dieter for WWZ
- Re-summed (ResBos)
 - WW,ZZ,WZ
- Parton shower (Pythia/Herwig, Madgraph+Pythia, MC@NLO)

W/Z + jets

- N jet cross section, where N goes up to 6?
- Jet_n p_T distribution
 - p_T^{min}=10,20,30,40 GeV/c inclusive
 - require p_T^{min,jet1}=100, 500, 1000 GeV/c
- Z + jet balancing
 - for lead jet
 p_T=20,30,40,50,100 GeV/c
 - cuts on additional jets

- LO, NLO (MCFM)
- Pythia, Herwig
- Madgraph+Pythia
- Effects of BFKL dynamics
- Effects of jet algorithms/parameter s
- Correlations with inclusive W/Z production

Inclusive jets

- From 20 GeV/c to 4 TeV/c
- N jet cross section where N goes up to 6
- Jet_n p_T distribution
 - p_T^{min}=10,20,30,40
 GeV/c inclusive
 - require p_T^{min,jet1}=100,
 500, 1000 GeV/c

- LO, NLO (EKS, NLOJET++)
- Pythia/Herwig
- Madgraph+Pythia
- Effects of jet algorithms/parameter s

Inclusive photons

- From 20 GeV/c to 1 TeV/c
- N jet cross section where
 N goes up to 6
- Jet_n p_T distribution
 - p_T^{min}=10,20,30,40 GeV/c inclusive
 - require p_T^γ=100, 500, 1000
 GeV/c
- γ + jet balancing
 - for lead jet
 p_T=20,30,40,50,100 GeV/c
 - cuts on additional jets

- LO, NLO (Owens, Vogelsang)
- resummed
- Pythia/Herwig
- Madgraph+Pythia

Diphotons

- Diphoton mass, y, q_T,Δφ; p_T of each photon
- N jet cross section where N goes up to 6
- Jet_n p_T distribution
 - p_T^{min}=10,20,30,40
 GeV/c inclusive
 - require $m_{\gamma\gamma}$ =100, 500, 1000 GeV

- LO, NLO (DIPHOX)
- Resummed (ResBos)
- Pythia/Herwig
- Madgraph+Pythia

tT

- Total cross section
- y
 - → -5 to 5 in 0.2 bins
- p_T
 - 0-2 TeV/c in 20 GeV/c bins
- m_{tT}
 - 0-5 TeV in 50 GeV bins

- LO, NLO (MCFM), NNLO (approximated)
- Resummed
- Pythia, Herwig
- Madgraph+Pythia
- Pdf correlation with W/Z
- tT as pdf benchmark

tT + jets

- N jet cross section where N goes up to 3-4
- Jet_n p_T distribution
 - p_T^{min}=10,20,30,40
 GeV/c inclusive
 - require p_T^{min,jet1}=100,500

- LO (MCFM), NLO (for tTj: Dittmaier et al)
- Pythia, Herwig
- Madgraph+Pythia
- Pdf correlation with W/Z
- Effects of jet algorithms/parameters

Single top

- Total cross section
- y
 - → -5 to 5 in 0.2 bins
- p_T
 - 0-2 TeV/c in 20 GeV/c bins

- LO, NLO (MCFM, other codes), NNLO (approximated)
- Resummed
- Pythia, Herwig
- Madgraph+Pythia
- Pdf correlation with W/Z,tT

(SM) Higgs

- Cross section (inclusive/subprocess
) as function of m_{Higgs}
 - 120,200,400,500,1000 GeV/c
- y
 - → -5 to +5 in 0.2 bins
- p_T
 - 0-100 GeV/c in 1 GeV/c bin
 - 0-1000 GeV/c in 10 GeV/c bins

- LO,NLO (MCFM)
- NNLO
- Resummed, threshold + ResBos
- Pythia, Herwig
- Madgraph+Pythia
- Pdf correlations with W/Z, tT

(SM) Higgs + jets

- Cross section (inclusive/subprocess) as function of m_{Higgs}
 - 120,200,400,500,1000
 GeV/c
- y
 - → -5 to +5 in 0.2 bins
- For n jets, n=1-4
 - p_T^{min}=10,20,30,40 GeV/c
 - ◆ require p_T^{min,jet1}=100, 500

- LO,NLO (MCFM)
- Pythia, Herwig
- Madgraph+Pythia
- Pdf correlations with W/Z, tT
- Effects of jet algorithms/parameter s

BSM Higgs